Conceptology of Intelligent Audit in High Supervisory Organizations With the approach of Soft Systems Methodology (Case Study: Supreme Audit Court of Iran)

Document Type : Research Paper

Authors

1 PhD student in industrial management, Tarbiat Modares University, Tehran, Iran. (Author)

2 Professor, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran.

3 Associate Professor, Department of Management, Faculty of Social and Economic Sciences, Alzahra University, Tehran. Iran.

4 Associate Professor, Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran.

Abstract

The increasing volume and complexity of supervisory needs and the existing limitations, make it impossible to fully perform the roles and tasks of supervisory organizations, including the Supreme Audit Court of Iran, with traditional methods and make intelligent audit an undeniable necessity to conduct audits with greater accuracy, speed, and comprehensiveness. In the present article, the concept of intelligent audit and its dimensions at the level of the Supreme Audit Court of Iran as a supervisory organization have been analyzed and explained with the help of different stages of soft systems methodology. The rich picture of the current situation, the root definition, and the conceptual model of the desired situation are important outputs in which an attempt has been made to explain why and what intelligent audit is at the level of the Supreme Audit Court. Intelligent audit in the Supreme Audit Court of Iran is a system based on the capabilities of information technology and artificial intelligence, which seeks to prevent, detect and warn in a timely manner of violations, crimes and misconduct, monitor macro-governance indicators and automate possible auditing activities. The lack of adaptability and communication of some information systems, obstacles to access the required data, weak technical knowledge in the field of data analysis and intelligent systems, internal resistance and inappropriate audit processes are among the most important obstacles and limitations of audit intelligence in the Supreme Audit Court, which must be overcome.

Keywords

Main Subjects

آذر، عادل؛ خسروانی، فرزانه و جلالی، رضا (1395). تحقیق در عملیات نرم: رویکردهای ساختاردهی مسأله. تهران: سازمان مدیریت صنعتی.
دهخدا، علی اکبر (1377). لغت‌نامه دهخدا، تهران: مؤسسه انتشارات و چاپ دانشگاه تهران. ج15.
روزبهانی، ناصر و اسدی، مرتضی (1397). آشنایی با دیوان محاسبات کشور، تهران: مرکز آموزش و برنامه‌ریزی دیوان محاسبات کشور.
روزنهد، جاناتان و مینجرز، جان (1392). مدل‌سازی نرم در مدیریت روش‌های ساخت‌دهی مسأله در شرایط پیچیدگی، عدم اطمینان و تعارض (عادل آذر و علی انوری، مترجمان). تهران: نگاه دانش. (نشر اثر اصلی 2001)
قانون دیوان محاسبات کشور، مجلس شورای اسلامی، مصوب 11/11/1361
گنتز، استفن د. (1400). مبانی حسابرسی فناوری اطلاعات (ملیحه قدرتی، مترجم). تهران: مرکز آموزش و برنامه‌ریزی دیوان محاسبات کشور. (نشر اثر اصلی 2014)
ویلیامز، باب و هاملبرونر، ریچارد (1395)، روش‌های کاربردی در تفکر سیستمی (عادل آذر و سعید جهانیان، مترجمان). تهران: صفار. (نشر اثر اصلی 2010)
Aksoy, T., Gurol, B. (2021). Artificial Intelligence in Computer-Aided Auditing Techniques and Technologies (CAATTs) and an Application Proposal for Auditors. In: Aksoy, T., Hacioglu, U. (eds) Auditing Ecosystem and Strategic Accounting in the Digital Era. Contributions to Finance and Accounting. Springer, Cham.
Azar, A., F. Khosravani and R. Jalali (2016). Soft operational research: Problem structuring approaches. Tehran. Industrial Management Organization. [In Persian]
Baldwin, A. A., C. Brown and Brad S. Trinkle (2006). “Opportunities for artificial intelligence development in the accounting domain: the case for auditing.” Intelligent Systems Accounting Finance and Management. 14 (3). 77-86.
Bizarro, Pascal A., Emily Crum and Jake Nix (2019). “The Intelligent Audit” ISACA Journal. 5 (6). 23-29.
Braun, Robert L., and Harold E. Davis (2003). "Computer-assisted audit tools and techniques: analysis and perspectives." Managerial Auditing Journal. 18 (9). 725 - 731.
Checkland, P. (1999). “Soft Systems Methodology: A Thirty-Year Retrospective Systems.” Research and Behavioral Science. 17 (1). 11-58.
Connell, N. (2001). “Evaluating Soft OR: Some reflection son an apparently unsuccessful implementation using a soft system methodology(SSM)based approach.” Journal of the Operational Research Society. 52 (2). 150-160.
Gao, Y. and L. Han (2021). Implications of Artificial Intelligence on the Objectives of Auditing Financial Statements and Ways to Achieve Them, Microprocessors and Microsystems. In Press.
Gentz, S. (2020). The Basics of IT Audit. (Translated by Malihe Ghodrati). Tehran: Training and planning center of Supreme Audit Court  [In Persian]
Gray, Glen L. and R. Debreceny. (2014). “A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits.” International Journal of Accounting Information Systems. 15 (4). 357-380.
Hall, J. (2000). information systems auditing and assurance. Mason: South-Western College Publishing.
Huang, Feiqi and M. Vasarhelyi. (2019). “Applying robotic process automation (RPA) in auditing: A framework.” International Journal of Accounting Information Systems. 35 (2). 1-11.
Issa, Hussein, Ting Sun and M. Vasarhelyi. (2016). “Research Ideas for Artificial Intelligence in Auditing: The Formalization of Audit and Workforce Supplementation.” Journal of Emerging Technologies in Accounting. 13 (2). 1-20.
Kirkos, Efstathios, Charalambos Spathis and Y. Manolopoulos. (2007). “Data Mining techniques for the detection of fraudulent financial statements.” Expert systems with applications. 32 (4). 995-1003.
Kokina, Julia and T. Davenport. (2017). “The Emergence of Artificial Intelligence: How Automation is Changing Auditing.” Journal of Emerging Technologies in Accounting. 14 (1). 115-122.
Moffitt, K., Rozario, A.M., & Vasarhelyi, M. (2018). Robotic Process Automation for Auditing. Journal of Emerging Technologies in Accounting. 15 (1). 1-10.
Munoko, I., Brown-Liburd, H.L. & Vasarhelyi, M. (2020). The Ethical Implications of Using Artificial Intelligence in Auditing. Journal of Business Ethics. 167 (3). 209–234.
Omoteso, K. (2012). “The application of artificial intelligence in auditing: Looking back to the future.” Expert Syst. Appl. 39 (9). 8490-8495.
Phua, C., V. C. Lee, K. Smith-Miles and R. Gayler (2007). “A Comprehensive Survey of Data Mining-based Fraud Detection Research.” ArXiv abs/1009.6119.
Roozbehani, Nasser and Morteza Asadi (2018). Familiarity with Supreme Audit Court. Tehran: Training and planning center of Supreme Audit Court [In Persian]
Rosenhead, J. and J. Mingers (2013). Rational Analysis for a Problematic World Revisited: Problem Structuring Methods for Complexity, Uncertainty and Conflict. (Translated by Adel Azar and Ali Anvari). Tehran: Negahe Danesh [In Persian]
Russell, Stuart, and Peter Norvig (2010). Artificial Intelligence: A Modern Approach. (3rd ed). New Jersey: Pearson
Sharma, Anuj and P. Panigrahi (2013). “A Review of Financial Accounting Fraud Detection based on Data Mining Techniques”. International Journal of Computer Applications. 39 (1). 37-47 ArXiv abs/1309.3944.
Tajinoa, A., Robert, Jamesb, and Kyoichi Kijima (2005). “Beyond needs analysis: Soft systems methodology for meaningful collaboration in EAP course design. Journal of English for Academic Purposes. 4 (1). 27-42.
Thiprungsri, Sutapat and M. Vasarhelyi (2011). “Cluster Analysis for Anomaly Detection in Accounting Data: An Audit Approach 1.” The International Journal of Digital Accounting Research. 11 (7). 69-84.
Williams, B. and R. Hummelbrunner (2016). Systems Concepts in action: a practitioner’s toolkit. Translated by Adel Azar and Saeed Jahanian. Tehran: Saffar.[In Persian]
  • Receive Date: 04 August 2022
  • Revise Date: 06 September 2022
  • Accept Date: 07 September 2022